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Surface damping treatments are often e!ective at suppressing higher frequency vibrations
in thin-walled structures such as beams, plates and shells. However, the e!ective suppression
of lower frequency modes usually requires the addition of an active vibration control scheme
to augment the passive treatment. Advances in the technologies associated with the so-called
smart materials are dramatically reducing the cost, weight and complexity of active
structural control and make it feasible to consider active schemes in an increasing number of
applications.

In this paper, the authors present a numerical and experimental study of the application of
active constrained layer damping to a clamped}clamped plate. Speci"cally, a passive
constrained viscoelastic damping layer is augmented with an active scheme employing
a PZT patch as the actuator. In the opening sections of the paper, emphasis is placed upon
establishing a suitable model of the plate. Starting with an established "nite element
formulation it is shown how model updating and model reduction are required to produce
a low order state-space model which can be used as the basis for active control. The
e!ectiveness of the formulation is then demonstrated in a numerical study. Finally, in the
description of the experimental study, it is shown how modes in the frequency range from
0 to 600 Hz are e!ectively suppressed: the two lowest modes (bending and torsional) through
active control using only a single sensor and single actuator in the feedback loop, the higher
modes (around 10 in number) by the constrained passive damping layer. The paper's original
contribution lies in the experimental demonstration that given a su$ciently accurate model
of the plate and passive constrained damping layer, together with a suitable active feedback
control algorithm, spillover e!ects are not signi"cant even when using a single sensor and
single actuator. The experimental traces show, in some instances, minor e!ects due to
spillover. However, it can be concluded that the presence of the passive layer introduces
su$cient damping into the residual modes to avoid any major problems when using only the
minimum amount of active control hardware.

( 2001 Academic Press
1. INTRODUCTION

The application of active control techniques to suppress vibrations in #exible structures
poses some special problems. These problems arise primarily from the distributed nature of
such structures and the resulting large number of degrees of freedom which are required in
a mathematical model to account for observed behaviour. If a lumped parameter model is
derived then this generally needs to be reduced in order prior to controller design. Balas [1]
investigated the so-called spillover e!ects which result from ignoring higher order modes
when implementing active feedback control. It was shown that spillover e!ects are liable to
degrade or even de-stabilize the response of the closed-loop system. Various techniques for
reducing the in#uence of spillover e!ects have been proposed. One e!ective technique in
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which modal transformations were employed so as to control each mode independently was
described by Meirovitch and his colleagues [2]. It was demonstrated that no spillover
occurs if the number of actuators is equal to the order of the lumped parameter model and
the number of sensors is capable of identifying all of the controlled modes. Furthermore, the
performance of the so-called independent modal-space control (IMSC) was shown to be
superior in almost every respect to techniques which seek to exploit the coupling in
a #exible structure in order to minimize the number of actuators and sensors.
Unfortunately, the hardware requirements for the independent control of modes can be
daunting and alternative techniques have been investigated with the aim of reducing
spillover e!ects whilst also reducing the number of actuators and sensors.

Early attempts at achieving these joint aims almost invariably involved experiments
using various cantilevered beams with piezoelectric elements to implement the control.
Bailey and Hubbard [3] overcame spillover e!ects by employing a distributed parameter
control algorithm. A drawback with this method concerned the need to provide
a measurement of the angular velocity of the beam's tip. Since such a measurement was not
available the experiments were limited to control of the fundamental mode. An alternative
approach was proposed by Fanson and Caughey [4]. These authors described experiments
to control the "rst six bending modes of a cantilevered beam using the so-called positive
position feedback (PPF). It was shown that using PPF the e!ect of spillover is to stabilize
rather than de-stabilize the closed-loop system. In a further example involving
a cantilevered beam, Baz and his colleagues [5] showed how the attributes of IMSC and
PPF could be combined to provide e!ective real-time control of structural vibrations using
a smaller number of actuators.

In the early 1990s, reports began to appear of an alternative approach to controlling
structural vibrations: using active techniques to augment the damping provided by
a passive constrained layer added to the host structure. It had long been recognized that
passive constrained layer damping is most e!ective at suppressing vibrations of the higher
frequency modes. Using a hybrid approach, it appeared feasible to use active control to
suppress the lower modes while the passive layer would reduce spillover from the higher
frequency modes. Baz and Ro [6] demonstrated the feasibility of this concept using the
ubiquitous cantilevered beam but soon progressed to more complex structures such as
plates and shells. Using a cantilevered plate, partially treated with an active constrained
damping layer, Baz and Ro [7] showed how the bending mode could be controlled
e!ectively using a simple proportional control arrangement. A comparison of active,
passive and hybrid (i.e., active constrained layer damping treatments) appeared in the study
by Veley and Rao [8]. A cantilevered beam and also a plate clamped on all four sides were
used as host structures to examine and compare active, passive and hybrid control
strategies. The design objectives were to minimize the weight of the structures and also to
achieve high levels of damping. The results showed that the hybrid approach is superior to
the active control of an untreated plate in that a given damping ratio can be achieved using
less than half the mass.

The present study is concerned with a clamped}clamped aluminium plate which was "rst
investigated by Azvine and his colleagues [9]. This plate is a simpli"ed version of an
instrument box cover found in a military aircraft. Azvine's brief was to investigate active
constrained layer damping treatments as a means of suppressing bending and torsional
vibrations which were causing the instrument box to malfunction in service. Negative
velocity feedback was used along with non-collocated sensors and actuators in an attempt
to control the "rst two modes of vibration. Using two actuators, the bene"ts of the
constraining layer were clearly demonstrated: higher feedback gains could be used to give
lower resonant peaks without causing instability. However, this study indicated the need for
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better models of the host plate, the passive constraining layer and the piezoelectric actuators
together with a more e!ective control algorithm based upon this model. At the same time, it
was essential for the eventual application that the amount of hardware be minimized.
Consequently, in the present investigation, it was decided to investigate whether e!ective
control could be achieved using only a single actuator and single sensor.

In what follows here, the authors describe this novel approach to controlling both the
bending and torsional vibrations of the clamped}clamped plate. Initially, the technique of
Baz and Ro [7] is extended to produce a "nite element model of the plate together with the
passive constraining layer. Using system identi"cation techniques, the model is validated
using data from the test facility. Model reduction and model updating are then applied to
produce a compact model which is capable of accounting for observed behaviour.
Following a comprehensive numerical study, active constrained layer damping treatments
is implemented experimentally and a comprehensive set of test results is presented.

2. FINITE ELEMENT MODELLING

2.1. STRATEGY

The strategy adopted by the authors is to develop a model-based approach to the
investigation of active constrained layer damping of a clamped}clamped plate. Modelling of
the plate and its passive damping treatment is conveniently performed using "nite element
analysis in order to determine the equations of motion in terms of mass, damping and
sti!ness matrices. Active control is more conveniently formulated in state-space notation
which requires transformation of the "nite element model [10]. This transformation is
straightforward in principle but can be di$cult in practice. The choice of model order is
crucial if observed behaviour is to be accounted for without requiring excessive matrix
dimensions. To obtain an acceptable compromise, formal model reduction techniques [11]
will be used here. Also, it has been found necessary to use model updating algorithms [12]
in order to obtain su$ciently close correspondence between model predictions and
observed behaviour.

2.2. MATHEMATICAL MODEL

The system under consideration involves the host plate to which is added a viscous elastic
layer and a further metallic constraining layer. The modelling technique follows Khuata
and Cheung [13] and Baz and Ro [7]. Rectangular plate elements are used as shown in
Figure 1. The co-ordinate system is illustrated in Figure 1(a) and the displacements in
Figure 1(b). The analysis of the host plate and the metallic constraining layer employs the
assumptions of thin-plate theory that can be found in any suitable textbook on fundamental
plate theory or "nite element analysis, for example, Dawe [14]. In addition, it is assumed
that a plane section of the viscoelastic layer remains plane after deformation, and that there
is no shear strain in the constraining layer and host plate. At each node k of element j, there
are seven degrees of freedom, four longitudinal, one transverse and two rotational
displacements. These displacements can be gathered together to form a vector:

D
j
"Gu1k , v1k , u3k , v3k , wk

,
dw

dy
k

,
dw

dx
k
H
T
, k"1, 2, 3, 4, (1)



Figure 1. A rectangular element of the three-layer plate: (a) co-ordinate system and nodes of the elements;
(b) displacement of the elements at x}z plane.
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where u
1k

, v
1k

and u
3k

, v
3k

are longitudinal displacements of the constraining layer and base
plate, respectively, in the x}z and y}z planes. Given this displacement vector, the equation
of motion is formed as

MjDG j#K1 jDj
"Fj , (2)

where Mj and K1 j are, respectively, the mass and sti!ness matrices of element j and Fj is an
external force vector acting at the jth element. The arrays Mj and K1 j are formulated by the
strain energy method [7, 13]. The shear modulus of the viscoelastic damping material is
given by G(1#ig) where G is the shear modulus and g is the loss factor which is frequency
dependent. Consequently, K1 is a complex sti!ness matrix whose imaginary part serves as
a loss energy or damping term. Full details (including experimental validation) of this "nite
element plate model are given in reference [15].

3. PASSIVE CONTROL OF PLATE VIBRATIONS

The plate used originates from a vibration control problem described by Azvine and his
colleagues [9]. In the present investigation, the original panel is modelled as a plate
clamped along opposite edges.

The plate is aluminium and has the dimensions 2)5 mm]305 mm]490 mm. The
experimental arrangement of the clamped}clamped plate is shown in Figure 2. Preliminary
experiments indicated that given excitation and measurement points at node 7, the "rst 10
modes can be excited and detected. These modes will be identi"ed experimentally and



Figure 2. Experimental arrangement of the clamped}clamped plate for passive constrained layer damping
experiments.
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compared with model predictions before consideration of model updating. Passive
damping, through the addition of viscoelastic and constraining layers, must aim to
attenuate levels of plate vibration. Ross and his colleagues [16] provided guidelines for
designing suitable surface treatments for plates. In the present study, self-adhesive damping
tape is used in conjunction with a thin metallic constraining layer. To simplify the
calculation of the damping properties, the relationship between the damping and
constraining layers is assumed to obey the relationship [16]

0)05(2h
23
#h

13
(0)15, (3)

where h
23

and h
13

are, respectively, the ratios of the damping and constraining layer
thicknesses to the base-plate thickness. The maximum loss factor introduced as a result of
the damping treatment can be calculated from [16]
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, (4)

where e
13

is the ratio of the modulus of elasticity of the constraining layer to that of the base
plate (or E

1
/E

3
). It is stated in reference [16] that the maximum error from this approximate

solution is 15%. There are four parameters to choose in the design process, the two
parameters h

2
, thickness, and g, loss factor for the damping layer and the two parameters

h
1
, thickness, and E

1
, modulus of elasticity for the constraining layer. Equation (4) implies

that the maximum damping is proportional to the loss factor g of the damping layer and the
thickness and modulus of elasticity of the constraining layer with respect to the "xed values
of the base-plate thickness h

3
and modulus of elasticity E

3
. From commercially available

materials, a 50)8 lm (0)002 in) thick ISD112 viscoelastic layer from the 3M company was
selected from the manufacturer's data sheet to provide a loss factor of approximately 1)0 in
the frequency range from 0 to 600 Hz. A 0)254 mm (0)010 in) thick steel shim was used as the
constraining layer giving an upper limit (equation (3)) equal to 0)1422. The steel shim was
used to provide a high modulus of elasticity for the constraining layer. Table 1 gives the
material properties for all three layers.

Figure 3 shows the in#uence of the passive constrained damping layer when compared
with the response of the undamped host plate. Note that the introduction of the damping
layer produces around 25 dB attenuation of all the modes up to 600 Hz. However, the
vibrations associated with the "rst two modes still produce mobility peaks some 20 dB
above those associated with the higher modes. It is these "rst two modes, one bending and



TABLE 1

Material properties of three-layer plate

Modulus of Modulus of Density Poisson's Shear loss
Material elasticity (MPa) rigidity (MPa) (kg/m3) ratio factor

Aluminium plate 70]103 * 2700 0)3 *

ISD112 viscoelastic layer 29)8s 20s 1140 0)49 1)0s

Steel constraining
layer 200]103 * 7000 0)3 *

sAt the centre frequency of 600 Hz.

Figure 3. Measured FRFs of the panel plate with and without constrained damping layer: - - - -, without passive
damping layer; ***, with passive damping layer.
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one torsion, which require the use of active control to introduce signi"cant additional
attenuation of vibration levels. Before proceeding to describe active constrained layer
damping it is necessary to re"ne the "nite element model of the passively damped plate.
A comparison between the predicted frequency response function (FRF) from the "nite
element model and the FRF measured experimentally (Figure 4), shows that the response
levels predicted by the model are consistent with the results from the experiments. However,
there are discrepancies in the predicted natural frequencies. The discrepancies in natural
frequencies probably stem from imperfect clamping at the two ends (see Figure 2) where
rotational sti!ness is present. These discrepancies will be minimized using updating
techniques before the model is used for control system design.

4. MODEL UPDATING

In the FRFs shown in Figure 4, the FRF predicted by the "nite element model is shifted
to the right of the experimental FRF. A pole placement technique was used to update the
"nite element model so that both the predicted natural frequencies and modal damping
factors are modi"ed so as to match the experimentally measured data.



Figure 4. Measured and predicted FRFs (point mobility, the same point for acting force and velocity response)
of the panel plate covered with constrained damping layer: - - - -, measured FRF; **, predicted FRF.
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4.1. SUMMARY OF POLE PLACEMENT TECHNIQUE

One updating algorithm using a pole placement technique was described by Inman and
Minas [17]. Sti!ness and damping matrices in the equation of motion are updated to match
the identi"ed natural frequencies and damping factors produced by experimental testing.
A brief review of the technique is necessary in order to understand the transformation of
equation (2) which is required before updating can be performed.

Consider the state-space form of the equations of motion [10],

G
DG

D0 H"C
!M~1D !M~1K

I 0 D G
D0

DH#C
B0

0 D f , (5)

where D is an (n]n) damping matrix, I is an (n]n) identity matrix, B
0

is an (n]n) input
matrix and f is an (n]1) input vector. If the vector f is used to provide the feedback signal,
then

f"GC G
D0

DH , (6)

where G is an (n]2m) gain matrix, C is an (2m]2n) measurement matrix containing 2m
rows of eigenvectors and m is the number of modes to be updated. Note that these modes
occur as complex conjugate pairs. A method of calculating the elements of G is given by
Porter and Crossley [18]. A suitable choice of the matrix B

0
to provide controllability of all

the modes is the identity matrix I [17]. Then the second term on the right-hand side of
equation (5) acts as a correction term and equation (5) can be rewritten as

G
DG

D0 H"C
!M~1D !M~1K

I 0 D G
D0

DH#C
DA1 DA2

0 0 D G
D0

DH (7)

where DA1 and DA2 are the (n]n) mass-normalized correction matrices of the damping and
sti!ness matrices, respectively, and are obtained from the inner product of B0 (GC). De"ne
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A1"!M~1D#DA1 and A2"!M~1K#DA2, then the updated damping and sti!ness
matrices can be obtained from

Dnew"!MA1 , Knew"!MA2 , (8)

where Dnew and Knew are the updated damping and sti!ness matrices respectively. In
equation (7), it is assumed that the damping matrix D represents viscous damping.
Consequently, it is necessary to transform the imaginary term of the complex sti!ness
matrix of the plate model as formulated in equation (2) to an equivalent viscous damping
matrix.

4.2. TRANSFORMATION OF THE IMAGINARY TERM OF THE COMPLEX STIFFNESS MATRIX TO

AN EQUIVALENT VISCOUS DAMPING MATRIX

The imaginary term of the complex sti!ness matrix can be transformed to approach the
viscous damping matrix where the viscous damping coe$cients are now frequency
dependent. The algorithm used to achieve this damping transformation is adapted from
work by Minas and Inman [19] and was originally used for identifying a non-proportional
damping matrix from experimental data. Details of the transformation have been presented
by Chantalakhana and Stanway [15]. Although this transformation is straightforward in
principle, di$culties in the present application arise owing to the dimensions of the
matrices, which are involved. Essentially, the pseudo-inverse of an overdetermined system
of linear equations incorporating a (2n2](n2#n)/2) order matrix needs to be computed.
Consequently, the mass and complex sti!ness matrices of the "nite element plate model
need to be reduced in size. To overcome this problem, the authors used the Guyan
reduction technique [20] to reduce the order of system equations before implementing the
transformation.

4.3. VALIDATION OF THE UPDATED MODEL

In this section, the pole placement algorithm for updating the model is implemented in
order to study its performance. Experimental data are required to implement the algorithm.
The diagram in Figure 5 summarizes the procedures necessary to achieve a re"ned, reduced
order model of the three-layer plate.

4.3.1. ¹entative model

Details of the "rst three stages in implementing the #ow-chart in Figure 5 are described
below. The "nite element model is obtained by discretizing the three-layer plate as 9]6
elements along the length and width directions, respectively, as shown in Figure 6.

The number of degrees of freedom n of the original "nite element plate model is 420.
Guyan reduction is performed by maintaining the transverse displacements of selected
nodes (see Figure 6) and the longitudinal displacements of the constraining layer at four
selected nodes. These nodes will be used in the active control strategies which are described
later. In this way, the number of degrees of freedom is reduced from n"420 to r"36. The
selection of these master nodes needs to ensure a suitable reduced order model over the
bandwidth of interest and also maintain correspondence with the measurement points used
in the experimental procedures. Guidelines for this node selection can be found in Shah and
Raymund [21]. The equation of motion with reduced mass and complex sti!ness matrices is



Figure 5. Procedures to achieve the re"ned model constructed using "nite element analysis.
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then solved to obtain the eigensolutions. These solutions are then used to transform the
imaginary term ZR of the reduced complex sti!ness matrix K1 R to an (r]r) equivalent
viscous damping matrix DR. The dynamic responses of this reduced order plate model
deviate from the original model owing to ignorance of the inertia term in the transformation
using Guyan reduction [22] and the pseudo-inverse used in the damping transformation
algorithm. The reduced order model eventually will be updated with parameters identi"ed
from experiments in order to match the model predictions to the observed behaviour of the
plate structure.

4.3.2. Identi,cation of natural frequencies and damping factors

Identi"ed natural frequencies and damping factors are used to update the "nite element
plate model. The frequency range of interest is from 0 to 600 Hz where modal damping



Figure 6. Division of plate to "nite elements and selected nodes for model reduction. Selected nodes: d,
transverse motion; ], transverse plus longitudinal motion.

TABLE 2

Measured and predicted ,rst six natural frequencies and damping factors of three-layer plate

Mode 1 2 3 4 5 6

Predicted natural frequency (Hz) 62)50 92)23 172)93 217)07 233)02 339)06
Measured natural frequency (Hz) 54)53 81)50 157)47 195)59 220)60 304)02
Predicted % damping 3)50 3)05 3)81 3)87 2)83 4)86
Measured % damping 3)44 3)51 4)13 3)66 3)41 3)57
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factors are generally less than 0)05. Hence, a simple peak picking method can be used for
identi"cation [23, 24]. Care must be taken when using the method since peak picking
requires well-separated modes. Many plate con"gurations have coincident modes but this
feature does not occur within the frequency range of interest of the plate used here. Note
that, in Figure 3, mode 7 at around 300 Hz disappears when the passive layer is applied to
the plate. Owing to the unavailability of mode 7, only the "rst six modes are identi"ed.
Table 2 gives the identi"ed natural frequencies and percentage damping factors of the "rst
6 modes compared with those from the model predictions. Speci"cally, the predictions are
obtained from the r order reduced model which is updated with the eigenvalues of the full
n order plate model. Then the predicted natural frequencies and damping factors are the
same for both models.

4.3.3. Model updating iteration and re,ned model

Unfortunately, the mass-normalized correction terms of the damping matrix (DA1) and of
the sti!ness matrix (DA2 ) are not guaranteed to be symmetrical such that the orthogonality
properties of the modal model are satis"ed [23]. These properties are required to enable
decomposition of the system equations used in modal control. Because of the requirement
for symmetrical sti!ness and damping matrices, the updating procedures need to be
repeated until the updated eigenvalues are acceptable when compared with the identi"ed
eigenvalues (see Figure 5). Figures 7 and 8 show a comparison of FRFs before and after
updating the "nite element three-layer plate model. The notation used is FRFj}k where j is



Figure 7. FRF7
}
7 (a) before updating; (b) after updating the model.

Figure 8. FRF7
}
23 (a) before updating; (b) after updating the model.
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the excitation point and k is the measurement point as indicated in Figure 6. In Figures
7 and 8, the dashed lines represent the measured FRFs and the solid lines represent the
FRFs from prediction (a) before updating and (b) after updating the model. These results
clearly show that the "rst six modes of the predicted FRFs are concurrent with the
measured FRFs and the higher modes (i.e., those not updated) are unchanged. Although
mismatches of the higher modes are clearly present, the accuracy of the updated models is
su$cient to use in an active design scheme where it is the accuracy of controlled pole
locations which is required.

5. MODAL CONTROL

From the results in section 3 (Figures 3 and 4), the FRFs of the plate treated with
a passive constrained damping layer show that an additional active control scheme is
required to provide adequate attenuation the "rst two modes of vibration of the plate. An
active element used to perform control action consumes energy and generally multiple
sensors and actuators are required if multiple modes are to be controlled. In the present
study, modal control theory [1] associated with coupling of the control force is used. An
advantage of coupling the force is to control a number of modes simultaneously using the
minimum number of actuators. However, spillover e!ects must obviously be taken into
account.
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5.1. MODAL STATE-SPACE FORM OF EQUATIONS OF MOTION

For the reduced order "nite element plate model with r degrees of freedom, the
corresponding state-space equation of motion is written as a set of 2r "rst order di!erential
equations:

G
DG

D0 H"C
0 MR

MR DRD
~1

C
MR 0

0 !KRD G
D0

DH#C
0 MR

MR DRD
~1

G
0

FH , (9)

where D is an (r]1) displacement vector, MR, DR and KR are (r]r) mass, damping and
sti!ness matrices, respectively, and F is an (r]1) force vector acting at the nodal points. For
the special case of a single input force, equation (9) may written in the form

Y0 "AY#bf (10)

where Y2r]1"[D0 T DT]T , A2r]2r is a plant matrix, b2r]1 is an input vector and f is a scalar
input. Let Y"Un, where n

2r]1
is a modal state variable vector and U2r]2r is

a transformation matrix containing 2r columns of the eigenvectors of A. After substituting
this transformation into equation (10) and pre-multiplying by U~1, then equation (10)
becomes

n0 "Kn#wf, (11)

where K"U~1AU is a diagonal matrix containing 2r eigenvalues of A along its diagonal
elements, w"U~1b is a modal controllability vector in which an element j of w quanti"es
controllability of the jth mode by the input f. This transformation results in the de-coupling
of equation (10). If equation (11) is partitioned as c controlled mode equations and
u residual or uncontrolled mode equations, then equation (11) can be re-arranged as

G
n0
c

n0
u
H"C

K
c

0

0 K
u
D G

n
c

n
u
H#G

wc

wuH f . (12)

The c controlled eigenvalues can be shifted to their desired values by feeding back the vector
of state variables n

c
, as a scalar input f with appropriate weightings

f"kT
c n

c
, (13)

where kc is a (c]1) gain vector.
The scalar feedback input f in equation (13) is formed from the modal state variable

vector n
c
which needs to be computed from physical measurements. A state estimator [10] is

implemented in conjunction with the modal controller to obtain estimates of all controlled
state variables.

5.2. SPILLOVER EFFECTS

Balas [1] showed that using a reduced set of equations for the controller and estimator
causes, respectively, control and observation spillover. A scalar input force f can excite the
controllable residual modes (see equation (12)) because of the force coupling which is
present. Similarly, if the measurement signal includes terms from the residual state variable
n
u
, then the estimator is contaminated by ampli"ed noise. These spillover e!ects can cause

instability in the controlled structure. However, these e!ects can be reduced by keeping the
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elements of the control and estimator gain vectors low. Optimal designs such as the linear
quadratic regulator and Kalman "lter [25] can be used to achieve this. Placement of the
actuator and sensor should be close to the nodal lines of residual modes so that the residual
modes are not signi"cantly excited and the residual state variables in n

u
are not strongly

observed.

6. DESIGN OF CONTROLLER

In what follows, the simplest possible con"guration of sensor and actuator is considered:
a single accelerometer and a single lead zirconate ceramic (PZT) actuator respectively. The
state estimator and the control law are designed in the continuous-time domain and then
transformed to the discrete-time domain for digital implementation. Placement of the
sensor and the actuator are described below.

6.1. PLACEMENT OF SENSOR AND ACTUATOR

Plots of mode shapes are used to identify positions for the sensor and actuator such that
they detect and excite the maximum transverse displacements of the "rst two modes whilst
also keeping to the nodal lines of the higher modes so as to minimize spillover e!ects. The
modal controllability and observability vectors are used to re"ne the selection of the sensor
and actuator locations.

The "rst six mode shapes are considered and then the sensor and actuator are located in
the middle of the upper half portion of the plate as illustrated in Figure 9. The dimensions of
the PZT actuator are chosen based upon the results obtained by "nite element modelling
and experimental observations. A 50 mm]50 mm PZT patch is used as the actuator.
Table 3 gives the controllability and observability indices of these sensor and actuator
locations from the "rst six elements of the mode controllability vector w and the mode
observability vector [10] respectively. Controllability and observability indices are low for
modes 3 and 4 where the actuator and sensor are placed near their nodal lines, but are high
for modes 1 and 2 where the actuator and sensor locations are in the region of maximum
transverse motion so as to provide large induced shear strain in the damping layer.

6.2. CONTROL LAW AND ESTIMATOR DESIGN

For the state-space equations with a single input and single output (SISO), the control
gain vector kT

c
in equation (13) and estimator gain can be assigned using a pole placement
Figure 9. Location of PZT actuator and accelerometer to control the "rst two modes of the panel plate.



TABLE 3

Controllability and observability indices

Mode Controllability Observability

1 6)30$1)060]101i !1)145]10~1$1)557]10~1i
2 !5)05$9)09i 3)66]10~2$8)67]10~2i
3 !1)500]10~8$7)30]10~8i !1)442]10~2$5)16]10~4i
4 !5)97]10~8$3)39]10~8i !6)15]10~3$7)94]10~3i
5 !8)43]10~1$2)49]10~1i !1)256]10~1$3)53]10~2i
6 2)16]102$2)51]102i !2)81]10~2$1)527]10~2i

TABLE 4

Poles and gains of designed controller

Mode Original poles (rad/s) Desired poles (rad/s) Control gain Estimator gain

1 !11)78$343i !105)6$339i !4)88$5)61i !1313$387i
2 !17)96$512i !74)6$498i 5)08$3)80i !720$302i
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technique. However, to optimize actuator power consumption and damping of the desired
modes, linear quadratic regulator (LQR) and Gaussian (LQG) algorithms [26] are used to
obtain optimal control and estimator gains, respectively, so that the spillover e!ects are not
su$cient to destabilize the actively controlled system. To implement the digital controller of
modal control algorithm, the controlled mode state-space equations of motion
corresponding to equation (12), the gain vector in equation (13) and the modal state
estimator need to be transformed to the discrete-time domain [27].

7. NUMERICAL EXPERIMENTS

The performance of the modal control algorithms is examined through a series of
numerical experiments. Controller and estimator gains are designed to produce maximum
damping of the "rst two eigenvalues and ensure stability of the closed-loop system in the
face of spillover e!ects. The desired eigenvalues, along with controller and estimator gains
are given in Table 4. The desired poles are obtained by using the LQR design to minimize
the control gains and to achieve high damping. The LQG design is used to obtain the
optimal estimator gains. The main consideration in designing the controller is to minimize
spillover problems.

In accordance with the discussion in section 6.1, the disturbance (shaker position) and
measurement points are at points 7 and 23, respectively, as shown in Figure 10. The control
excitation is applied to the PZT actuator placed in the middle of the upper portion of the
three-layer plate. The complete closed-loop control system is shown in Figure 11.

The PZT actuator model is initially designed to activate in both the x and y directions
(see Figure 10) and the predicted FRFs are shown in Figure 12 where the FRFs relate the
integrated velocity from the accelerometer to the disturbance force derived from the load
cell. The FRF simulation results in Figure 13 show the in#uence of activating the PZT
model in the x direction only. The results demonstrate that superior suppression of
vibrations is obtained by activating in the x direction only since actuation of the PZT in the
y direction is liable to induce excitation of higher modes and thus a!ect the closed-loop



Figure 10. Actuator location and excitation and measurement points (7,23) used in simulation of active
constrained layer damping.

Figure 11. Block diagram of digital control simulation to match with real-time interface using SIMULINK
software.
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poles. In addition, the power consumption for the PZT actuator decreases when actuation
is in one direction only, as shown by the plots of applied voltage versus time in Figure 14
where the disturbance time history is swept sine with a frequency range from 0 to 600 Hz.
Also superimposed in Figures 12 and 13 are simulation results produced using a controller
designed upon the basis of the reduced order model prior to updating. In both cases the use
of the updated model produces superior suppression of the "rst two modes. Also in
Figure 12 there are indications of spillover causing excitation of the modes at around 200
and 500 Hz. Given these results it was decided to proceed with the experimental study using
the updated, reduced order model as the basis for controller design.

8. EXPERIMENT FACILITY AND RESULTS

The general arrangement of the test facility is shown in Figure 15. Implementation of the
digital controller is performed using a commercial package (&&dSPACE''DS1102) which uses



Figure 12. Simulation results: predicted FRFs of three-layer plate with and without active control for PZT
actuator operating in both x and y directions: **, passive control; ===, active control with updated-model
controller; - - - - -, active control with erroneous-model controller.

Figure 13. Simulation results: predicted FRFs of three-layer plate with and without active control for PZT
actuator operating in x direction only: **, passive control; ===, active control with updated-model
conrtroller; - - - - -, active control with erroneous-model controller.
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one analogue-to-digital input channel and one digital-to-analogue output channel. In
general, to avoid aliasing of a sampled signal, the sampling frequency must be greater than
twice the highest natural frequency, which in this case is around 600 Hz [25]. In the present
study it was found that a sampling frequency of 10 kHz provided a suitable compromise
between su$ciently accurate discretization of the analogue signal for real-time control and
the capabilities of the digital signal processor. This sampling rate also ensures that the
spillover e!ects from the uncontrolled higher frequency modes will not occur. The control
interface card is designed to operate with SIMULINK software [28]. Processing of the



Figure 14. Simulation results: applied voltage for PZT actuator: (a) operating in both x and y directions;
(b) operating in x direction only.

Figure 15. Arrangement of clamped}clamped plate with electronic equipment for digital control implementation.
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sensor signal to compute the command force is written in block diagram form in
SIMULINK. This programming format is restricted to operations in real numbers and
hence the complex matrices of the state-space controller have to be transformed into
complex transfer functions (see Figure 11). Real and imaginary terms can then be computed
separately in terms of real numbers.

To activate the PZT actuator in the x direction only, a 50 mm]50 mm element of
PZT material is cut into four strips of equal width and attached to the plate as shown in
Figure 16. The PZT actuator is approximately 1 mm thick to react e!ectively to



Figure 16. Con"guration of PZT actuator: (a) for operation in x and y directions; (b) for operation in x direction
only.

Figure 17. Measured FRFs of three-layer plate with and without active control for PZT actuator operating in
both x and y directions: )))))), passive control; ***, active control.
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a maximum voltage of from 1 to 2 kV [29]. The relationship between force and voltage
applied for the PZT actuator is derived as [29]

f (t)"p
a
A

a
"AEa

d
31
t
a

< (t )B b
a
t
a

"!0)702 <(t ) (N/V), (14)

where p
a

is the stress developed in the PZT, A
a

is the cross-section of the PZT, b
a

is the
width of the PZT, t

a
is thickness of the PZT, E

a
is the modulus of elasticity of the PZT

("1/15)1]10~12 N/m2) and d
31

is the piezoelectric constant ("!212]10~12 mV~1).
Figures 17 and 18 show FRFs from experiments for di!erent PZT actuator

con"gurations and can be compared directly with the simulation results shown in Figures
12 and 13. Close agreement between simulations and experiments is evident. The
introduction of active control results in signi"cant attenuation of the two lowest modes,
which was predicted by the simulation results. However the simulation results in Figures 12
and 13 indicated that these two modes would coalesce into a single mode. This did not
happen in practice with the modes remaining distinct. The experimental results also show



Figure 18. Measured FRFs of three-layer plate with and without active control for PZT actuator operating in
x direction only: )))))), passive control; ***, active control.

Figure 19. FRF7
}
23 (PZT operating in two directions): ))))), Bare plate; ***, plate with passive damping

layer; - - - - -, plate with active damping control.
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the excitation of the mode just above 500 Hz which occurs when the actuator is arranged to
operate in both x and y directions.

Comparisons of both active and passive control schemes in relation to the response of the
bare plate are shown in Figures 19 and 20. The notation used here is FRFj}k where j is the
excitation point and k is the measurement point, as de"ned in Figure 6. The FRF of the
actively damped plate using the two-direction PZT actuator is shown in Figure 19 and
Figure 20 is of the one-direction PZT case. The attenuation of the "rst and second modes is
increased through the active damping control by about 10 and 5 dB respectively. Noise is
associated with the FRFs measured from the response of the actively controlled plate using
the one-direction PZT actuator, especially at low and high frequencies. This may arise from
the unsynchronized operation of the four-strip PZT actuator designed to operate in one
direction only. The results in Figures 19 and 20 show clearly the in#uence of passive and
active constrained layer damping on the dynamic response of the plate.



Figure 20. FRF7
}
23 (PZT operating in two directions): ))))), Bare plate; ***, plate with passive damping

layer; - - - - -, plate with active damping control.
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9. CONCLUSIONS

In this paper, the authors have described both numerical and experimental investigations
into the active constrained layer damping of a clamped}clamped plate. The strategy
adopted has involved the development of a model-based approach to control system design.
The aim has been to minimize the amount of control hardware required whilst avoiding
spillover problems which are liable to degrade performance.

Initially, a passive constrained damping layer was introduced and its in#uence on
vibration levels was investigated. Not unexpectedly it was found that the higher modes
bene"ted signi"cantly from the introduction of the passive layer: modes 3}10 in the range
from 150 to 600 Hz were attenuated by approximately 25 dB. The "rst two modes (bending,
torsional) below 100 Hz were attenuated by a similar amount. However, peak mobility
levels for modes 1 and 2 were still some 20 dB above those of the higher order modes and an
active strategy was developed to deal with this problem.

The development of the active control system involved the transformation of the original
"nite element model of the plate into a modal state-space description to be implemented in
discrete time. To illustrate some of the key problems involved in this transformation and the
solutions which were devised, the mathematical treatment has been described in some
detail. The end result of the various computations was a fourth order estimator/controller.
Numerical experiments indicated that such an arrangement was capable of attenuating
modes 1 and 2 (in conjunction with a 72nd order model of the plate) without incurring
problems due to spillover. This was achieved using only a single sensor and single actuator
channel.

The experimental study con"rmed the results of the numerical simulations. Two
con"gurations of actuator were investigated*a single PZT patch arranged to provide
actuation in mutually perpendicular directions, and an arrangement of four PZT patches
driven by a single ampli"er but designed to activate the plate in a single direction only. Both
con"gurations were e!ective at controlling modes 1 and 2 but the single PZT patch
produced signi"cant excitation of a mode above 500 Hz.

Two mobility/frequency plots have been used to summarize the e!ects of passive and
active constrained layer damping and actuators operating in one and two directions. By
using the four-patch arrangement the excitation of the mode above 500 Hz, which occurs
using a single patch, can be avoided. Also, using the four PZT patches collocated with the
sensor produces the greatest attenuation of modes 1 and 2 but the mobility/frequency plot is
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noisier, especially at high and low frequencies. Overall, the experiments show that the
passive layer introduces su$cient damping into the higher modes to avoid any serious
problems due to spillover e!ects.

Future work will be aimed at comparing the performance of the time-domain control
algorithm with robust frequency domain methods which have recently been developed for
use with plate-like structures [30].
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APPENDIX A: NOMENCLATURE

A
a

cross-sectional area of the PZT actuator (m2)
b
a

width of the PZT actuator (m)
B0 input matrix (n]n)
C measurement matrix (2m]2n)
d
31

piezoelectric constant (m/V)
e
13

ratio of the modulus of elasticity between the constraining layer and the base plate
E
1,3

modulus of elasticity of the constraining layer and the base plate respectively
(N/m2)

E
a

modulus of elasticity of the PZT actuator (N/m2)
f (t) force varied in time (N)
f input vector (n]1)
G modulus of rigidity (N/m2)
G gain matrix (n]2m)
h
1,2,3

thickness of the constraining layer, viscoelastic and base plate respectively (m)
h
23

, h
13

thickness ratio between the viscoelastic layer and the base plate and the
constraining layer and the base plate respectively

I identity matrix (r]r)
i, j, k, l, m, n, r integer
Mj, K1 j mass and complex sti!ness matrices for the jth element (kg, N/m2)
M, D, K global mass, damping and sti!ness matrices (n]n)
MR , K1 R reduced-order mass and complex sti!ness matrices (r]r)
t time
t
a

thickness of the PZT actuator (m)
u
1k,3k

longitudinal displacement in x-axis at node k of the rectangular element of the
constraining layer and the base plate respectively (m)

U eigenvector matrix (2r]2r)
v
1k,3k

longitudinal displacement in y-axis at node k of the rectangular element of the
constraining layer and the base plate respectively (m)

<(t) applied voltage across the PZT actuator (V)
w
k

transverse displacement in z-axis at node k of the rectangular element (m)
dw

dy
k

,
dw

dx
k

rotational displacement about x- and y-axis respectively (rad)

Y state vector (2r]1)
ZR, KR reduced order imaginary and real terms, respectively, of the complex sti!ness

matrices (r]r)
g loss factor of viscoelastic layer
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l
3

Poisson's ratio of the base plate
o
3

density of the base plate (kg/m3)
p
a

stress developed in the PZT actuator (N/m2)
n modal co-ordinate vector (2r]1)
K eigenvalue matrix (2r]2r)
D
j

displacement vector of the rectangular element j (28]1)
DA1,2

mass-normalized correction matrices for the damping and sti!ness matrices
respectively

i complex operator, J!1
[ ]T matrix transpose
[ ]~1 matrix inverse
[ ]* complex conjugate matrix transpose
[ ]

c
controlled terms

[ ]
u

uncontrolled terms
[x5 ] di!erentiation of x variable with respect to time
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